Abekta

Nothing human is alien to me

User Tools

Site Tools


courses:phy101l:2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
courses:phy101l:2 [2023/06/17 10:06] asadcourses:phy101l:2 [2023/10/15 04:02] (current) asad
Line 1: Line 1:
 ====== 2. Gravitational acceleration from a pendulum ====== ====== 2. Gravitational acceleration from a pendulum ======
 +[[https://colab.research.google.com/drive/1XMSfX646Gj-83531zYt1wXZ8RA0N1uOP?usp=sharing|Click here for the report sample]]
  
 ===== - Introduction and theory ===== ===== - Introduction and theory =====
-https://argiub.space/abekta/_media/courses/phy_101l_manual.pdf+{{https://upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Forces_acting_on_a_simple_pendulum.svg/807px-Forces_acting_on_a_simple_pendulum.svg.png?nolink&500}} 
 + 
 +For a simple pendulum 
 + 
 +$$ T = 2\pi \sqrt{\frac{L}{g}} \Rightarrow g = 4\pi^2 \frac{L}{T^2}. $$ 
 + 
 +For a compound pendulum 
 + 
 +$$ T = 2\pi \sqrt{\frac{\frac{K^2}{l}+l}{g}} $$ 
 + 
 +and, hence, a compound pendulum is equivalent to a simple pendulum if 
 + 
 +$$ L = \frac{K^2}{l} + l \Rightarrow l^2 - lL + K^2 = 0 $$ 
 + 
 +which is a quadratic equation with two solutions $l_1$ and $l_2$ where $l_1+l_2=L$ and $l_1l_2=K^2$. 
 + 
 +You have to find gravitational acceleration $g$ and radius of gyration $K=\sqrt{l_1l_2}$.
  
 ===== - Method and data ===== ===== - Method and data =====
 +
 +==== - Data table ====
 +^ Hole no. ^ Distance [cm] ^ Trial ^ Time for 10 oscillations [s] ^
 +| 1 | 10 | 1 |  |
 +|:::|:::| 2 |  |
 +| 2 | 20 | 1 |  |
 +|:::|:::| 2 |  |
 +| 3 | 30 | 1 |  |
 +|:::|:::| 2 |  |
 +| 4 | 40 | 1 |  |
 +|:::|:::| 2 |  |
 +| 6 | 60 | 1 |  |
 +|:::|:::| 2 |  |
 +| 7 | 70 | 1 |  |
 +|:::|:::| 2 |  |
 +| 8 | 80 | 1 |  |
 +|:::|:::| 2 |  |
 +| 9 | 90 | 1 |  |
 +|:::|:::| 2 |  |
  
 ===== - Graphical analysis ===== ===== - Graphical analysis =====
  
-===== - Results =====+===== - Calculating g ===== 
 +Find $R$ from here: https://rechneronline.de/earth-radius 
 + 
 +$$ g = \frac{GM}{R^2} $$
  
 ===== - Discussion and conclusion ===== ===== - Discussion and conclusion =====
 +Answer the following questions in Discussion.
 +  - Why the angle of deflection of the pendulum should not be large?
 +  - Why are the periods at 10, 30, 70 and 90 cm similar?
 +  - Why do you get two symmetric curves after plotting $T$ as a function of $l$.
 +  - If your were periods at 10, 30, 70 and 90 cm were not as similar as expected, discuss why this happened?
  
courses/phy101l/2.1687017966.txt.gz · Last modified: by asad

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki