Abekta

Nothing human is alien to me

User Tools

Site Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
courses:ast301:1 [2024/02/18 02:03] – [7. Instability and pulsation] asadcourses:ast301:1 [2024/03/07 01:12] (current) – [4.2 Dynamical timescale] asad
Line 113: Line 113:
 where we assume $N(N-1)\approx N^2$ because $N$ is large. The factor $N(N-1)/2$ comes from the **combination** of two items from a total of $N$ items: $_NC_2=N!/[2!(N-2)!]=N(N-1)/2$. If total mass $M=Nm$ then where we assume $N(N-1)\approx N^2$ because $N$ is large. The factor $N(N-1)/2$ comes from the **combination** of two items from a total of $N$ items: $_NC_2=N!/[2!(N-2)!]=N(N-1)/2$. If total mass $M=Nm$ then
  
-$$ M \langle v_i^2 \rangle_{av} - G\frac{M^2}{2} \langle r_{ij}^{-1} \rangle_{av} $$+$$ M \langle v_i^2 \rangle_{av} - G\frac{M^2}{2} \langle r_{ij}^{-1} \rangle_{av} = 0$$
  
 and hence the **virial mass** of a cluster and hence the **virial mass** of a cluster
Line 153: Line 153:
 The time needed to fall by a distance $R$ is found from the constant-force expression $s=at^2/2$, i. e. the dynamical timescale The time needed to fall by a distance $R$ is found from the constant-force expression $s=at^2/2$, i. e. the dynamical timescale
  
-$$ \tau_{in} = \sqrt{\frac{R}{a}} = \sqrt{R^3}{GM} $$+$$ \tau_{in} = \sqrt{\frac{R}{a}} = \sqrt{\frac{R^3}{GM}} $$
  
 where density $\rho=M/R^3$ giving rise to where density $\rho=M/R^3$ giving rise to
courses/ast301/1.1708246988.txt.gz · Last modified: 2024/02/18 02:03 by asad

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki