Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
un:galileo-galilei [2023/06/30 03:45] – created asad | un:galileo-galilei [2023/06/30 03:58] (current) – removed asad | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Galileo Galilei ====== | ||
- | Galileo was the first person in human history who understood that a physical science can only be founded upon the dual act of mathematical modelings and physical experiments or observations. Modeling the formal world in the fashion of [[Plato]] is not enough, one has to simultaneously meddle in the affairs of the physical world in the fashion of [[Aristotle]]. | ||
- | |||
- | Galileo' | ||
- | |||
- | Galileo' | ||
- | |||
- | $$ \frac{t_1}{t_2} = \frac{s_1}{s_2} $$ | ||
- | |||
- | or the ratio of the times is equal to the ratio of the distances if the velocity between the two distances and time intervals is constant. If the velocity is also different at the two different times, then it can be shown that | ||
- | |||
- | $$ \frac{t_1}{t_2} = \frac{s_1}{s_2} \frac{v_2}{v_1} $$ | ||
- | |||
- | or the ratio of the times is equal to the product of the direct ratio of the distances and the inverse ratio of the velocities. | ||
- | |||
- | What if the velocity is not just different at the two instances, but changes continually during the interval, that is if the velocity is subjected to a constant acceleration $a$? Galileo understood that in this case, $v=at$ and | ||
- | |||
- | $$ s = \frac{1}{2} at^2 $$ | ||
- | |||
- | if an object is accelerated from rest for a period of time. If an object is falling freely under gravity on the surface of the Earth, it is subjected to a constant acceleration $g$ and the equations become $v=gt$ and $s=gt^2/2$. Galileo did not use this notation, but he did discover the ' | ||
- | |||
- | $$ \frac{s_1}{s_2} = \frac{t_1^2}{t_2^2}. $$ | ||
- | |||
- | Galileo combined the concepts of motion at //constant speed// and at //constant acceleration// | ||
- | |||
- | His mathematical methods looked back to Euclid, but his experimental and observational methods looked forward to our modern age. His system of units was as modern as us. His unit of length was called //punto// where 1 punto = 0.094 cm. And for time he used 1 tempo = 0.01 s. For weighing he used 1 grain = 0.065 g. His units were so small that his experiments always yielded large numbers, therefore he could get many significant figures without resorting to decimals. | ||
- | |||
- | His celestial observations set the standard for astronomical observations once and for all. | ||
un/galileo-galilei.1688118323.txt.gz · Last modified: 2023/06/30 03:45 by asad