un:em-gyration
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
un:em-gyration [2024/10/12 08:53] – asad | un:em-gyration [2024/10/20 09:54] (current) – asad | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Electromagnetic gyration ====== | ====== Electromagnetic gyration ====== | ||
- | Gyration | + | The gyration |
$$ m\frac{d\mathbf{v}}{dt} = q(\mathbf{E}+\mathbf{v}\times\mathbf{B}) $$ | $$ m\frac{d\mathbf{v}}{dt} = q(\mathbf{E}+\mathbf{v}\times\mathbf{B}) $$ | ||
- | where $m$ is the mass of the particle and $\mathbf{v}$ is its velocity. | + | where $m$ is the mass of the particle and $\mathbf{v}$ is its velocity. |
- | $$ m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} = q (\mathbf{v}\times\mathbf{B}) \cdot \mathbf{v} \ \Rightarrow \ frac{d}{dt}\left(\frac{1}{2}mv^2\right) = 0 $$ | + | $$ m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} = q (\mathbf{v}\times\mathbf{B}) \cdot \mathbf{v} \ \Rightarrow \frac{d}{dt}\left(\frac{1}{2}mv^2\right) = 0 $$ |
- | Because | + | Since $\mathbf{v}\cdot (\mathbf{v}\times\mathbf{B})=0$ and both sides are divided by 2, it implies that the kinetic energy ($mv^2/2$) and the magnitude of the velocity (speed) |
- | In a constant | + | If the magnetic field is aligned |
\begin{align*} | \begin{align*} | ||
Line 19: | Line 19: | ||
\end{align*} | \end{align*} | ||
- | where $\dot{v}_x=dv_x/ | + | where $\dot{v}_x=dv_x/ |
\begin{align*} | \begin{align*} | ||
Line 26: | Line 26: | ||
\end{align*} | \end{align*} | ||
- | where $\omega_g=(qB/ | + | where $\omega_g=(qB/ |
\begin{align} | \begin{align} | ||
Line 33: | Line 33: | ||
\end{align} | \end{align} | ||
- | where the sign of the two components | + | The sine terms in the displacement |
$$ r_g = \frac{v_\perp}{|\omega_g|} = \frac{mv_\perp}{|q|B} $$ | $$ r_g = \frac{v_\perp}{|\omega_g|} = \frac{mv_\perp}{|q|B} $$ | ||
Line 39: | Line 39: | ||
where $v_\perp = (v_x^2+v_y^2)^{1/ | where $v_\perp = (v_x^2+v_y^2)^{1/ | ||
- | Now the trajectory obtained according | + | According |
- | If the particle's velocity | + | If the particle has no velocity |
{{: | {{: | ||
- | The distance | + | The distance |
$$ \alpha = \tan^{-1} \frac{v_\perp}{v_\parallel} $$ | $$ \alpha = \tan^{-1} \frac{v_\perp}{v_\parallel} $$ | ||
- | That is, the pitch angle depends on the ratio of the two components | + | Thus, the pitch angle depends on the ratio of the two velocity |
un/em-gyration.1728744832.txt.gz · Last modified: by asad