Abekta

Nothing human is alien to me

User Tools

Site Tools


Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
bn:un:aberration [2024/04/17 01:50] – created asadbn:un:aberration [2025/03/04 04:00] (current) asad
Line 1: Line 1:
 ====== এবারেশন ====== ====== এবারেশন ======
 +সূর্যের চারদিকে পৃথিবীর পরিবর্তনশীল বেগের কারণে আকাশে কোনো এস্ট্রোনমিকেল অব্জেক্টের পজিশনের যে পরিবর্তন হয় তার নাম এবারেশন। জেমস ব্র্যাডলি ১৭২৭ সালে প্রথম তারার এবারেশন মেপেছিল এবং এটাই ছিল সূর্যের চারদিকে পৃথিবীর আবর্তনের প্রথম সরাসরি প্রমাণ। আইনস্টাইনের [[relativity-special|স্পেশাল রেলেটিভিটির]] মাধ্যমে এবারেশনের ইকুয়েশন ডিরাইভ করা যায়, তবে ডেরিভেশনের আগে আমরা সিম্পল সমীকরণটা দেখব। একটা অব্জেক্টের আসল দিক এবং অব্জার্ভারের (পৃথিবী) ভেলোসিটি ভেক্টরের দিকের মধ্যে কোণ যদি $\theta$ হয়, তাহলে এবারেশনের কৌণিক মান
 +
 +$$ \alpha = \frac{v}{c} \sin\theta $$
 +
 +যেখানে $v$ অব্জার্ভারের স্পিড, আর $c$ আলোর স্পিড। পৃথিবী সূর্যের চারদিকে ঘুরছে বলে যেকোনো অব্জেক্টের জন্য $\theta$র মান ০ থেকে ৩৬০ ডিগ্রি পর্যন্ত পাল্টায়, নিচের ছবির মাধ্যমে ব্যাপারটা ব্যাখ্যা করা হয়েছে।
 +
 +{{https://upload.wikimedia.org/wikipedia/commons/9/95/Aberrationseasons.svg?nolink}}
 +
 +উপরের ছবির মতো যদি ধরা হয় অনেক দূরের তারা থেকে আলো লম্বালম্বিভাবে পৃথিবীতে আমাদের উপর পড়ছে, তাহলে বিভিন্ন সিজনে এই আলোকে আমরা বিভিন্নভাবে বাঁকতে দেখব। আলোর রশ্মি বেঁকে যায় পৃথিবীর বেগের দিকে। সেপ্টেম্বরে পৃথিবী ডান দিকে যাচ্ছে বলে আলো ডানে বাঁকে, ডিসেম্বরে ডান বাম কোনদিকেই বাঁকে না যেহেতু পৃথিবী তখন এই পেইজের ভিতরের দিকে যাচ্ছে, মার্চে আলো বাঁকে বাম দিকে। এই বাঁকার কারণে সব তারার পজিশন পাল্টায় পিরিয়ডিকভাবে। একটা তারার পজিশন জুন মাসে তার গড় মান থেকে বাড়তে বাড়তে সেপ্টেম্বরে সবচেয়ে দূরে যায়, তারপর কমতে কমতে ডিসেম্বরে আগের জায়গায় ফিরে আসে, এবং তারপর আবার বাড়তে বাড়তে মার্চে উল্টা দিকে সবচেয়ে দূরে যায়। এই সিম্পল হার্মনিক মোশন (এসএইচএম) একটা সাইন কার্ভ দিয়ে মডেল করা যায়।
 +
 +===== - ডেরিভেশন =====
 +
 +{{https://upload.wikimedia.org/wikipedia/commons/9/93/Simple_stellar_aberration_diagram.svg?nolink}}
 +
 +In this example of 2D frame moving only in the $x$-direction
 +
 +$$ \tan\phi = \frac{c_y'}{c_x'} = \frac{c_y}{\gamma(c_x+v)} $$
 +
 +where $\gamma=(1-v^2/c^2)^{-1/2}$ and $v$ is the velocity of the observer. The velocity components of light in the rest and moving frame are $(c_x,c_y)$ and $(c_x',c_y')$, respectively. So
 +
 +$$ \tan\phi = \frac{c\sin\theta}{\gamma(c\cos\theta+v)} = \frac{\sin\theta}{\gamma(v/c+\cos\theta)}. $$
 +
 +If $v \ll c$, $\gamma=1$. and if $\theta=90^\circ$ then
 +
 +$$ \tan(\theta-\phi) = \cot\phi = \frac{\gamma(v/c+\cos\theta)}{\sin\theta} = \frac{v}{c} $$
 +
 +and, finally, if $\theta-\phi$ is very small then **aberration** $\alpha = \theta-\phi \approx v/c$.
  
bn/un/aberration.1713340205.txt.gz · Last modified: 2024/04/17 01:50 by asad

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki