$$ mgh = \frac{1}{2} m r^2 \omega^2 + \frac{1}{2} I \omega^2 + n_1 W $$
$$ \frac{1}{2} I \omega^2 = n_2 W \Rightarrow W = \frac{I\omega^2}{2n_2} $$
$$ I = \frac{2mgh - mr^2\omega^2}{\omega^2\left(1+\frac{n_1}{n_2}\right)} $$
$$ \frac{\omega+0}{2} = \frac{2\pi n_2}{t} \Rightarrow \omega = \frac{4\pi n_2}{t} $$
$$ h = 2\pi r n_1 $$
Number of rotations before the mass falls, $n_1=$
Radius of the axle, $r=[(a+vb)/2]$ cm; where $a$ is the main scale reading, $b$ is the Vernier scale reading, and $v$ is the Vernier constant.
Mass [g] | $n_2$ | $t$ [s] |
---|---|---|
1000 | ||
1500 | ||
2000 | ||
2500 |
Mean
$$ \mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i. $$
Standard deviation
$$ \sigma = \sqrt{ \frac{1}{N} \sum_{i=0}^{N-1} (x_i-\mu)^2}. $$
The final result of an experiment is quoted as
$$ \text{ value } = \mu \pm \sigma. $$