====== VIII. Sources of magnetic field ====== ===== - The Biot-Savart law ===== {{:courses:phy102:8-1.jpeg?nolink|}} This is an empirical law. The magnetic field produced by a current $$ d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{l}\times \hat{r}}{r^2} $$ where the vacuum permeability $\mu_0=4\pi\times 10^{-7}$ T m A$^{-1}$. The direction of $d\vec{B}$ can be found using the right hand rule. So magnetic field $$ \vec{B} = \frac{\mu_0}{4\pi} \int_{wire} \frac{I d\vec{l}\times \hat{r}}{r^2}. $$ ===== - Magnetic field due to a thin straight wire ===== {{:courses:phy102:8-2.jpeg?nolink|}} $$ B = \frac{\mu_0}{4\pi} \int_{wire} \frac{I \sin\theta dx}{r^2} $$ Substitute $r^2 = x^2+R^2$ and $\sin\theta = R(x^2+R^2)^{-1/2}$ and evaluate the integral to get $$ B = \frac{\mu_0 I}{2\pi R} \left[ \frac{x}{(x^2+R^2)^{1/2}} \right]_{wire} $$ and if the wire is infinite, limit is from $0$ to $\infty$ and we get $$ B = \frac{\mu_0 I}{2\pi R}. $$ {{:courses:phy102:8-3.jpeg?nolink|}} There is a circular symmetry, magnetic field lines are circular around a current carrying wire and the field decreases by a factor equal to the circumference. {{:courses:phy102:8-4.jpeg?nolink|}} Magnetic field lines can be visualized using compass needles or iron feelings. ===== - Magnetic force between parallel conductors ===== {{:courses:phy102:8-5.jpeg?nolink|}} The magnetic field for the first wire, $$ B_1 = \frac{\mu_0 I}{2\pi r} $$ Because of this the first wire exerts a force $F_2$ on the second wire and this force $$ F_2 = I_2 l B_1 \sin\theta = I_2 l B_1 $$ and the force per unit length becomes $$ \frac{F}{l} = \frac{\mu_0 I_1 I_2}{2\pi r} $$ where $r$ is the distance between the wires. It is attractive if current is in the same direction, and repulsive for opposite currents. ===== - Magnetic field of a current loop ===== {{:courses:phy102:8-6.jpeg?nolink|}} Magnetic fields only along the $y$ axis do not cancel out. So $$ \vec{B} = \hat{j} \int_{loop} dB \cos\theta = \hat{j} \frac{\mu_0 I}{4\pi} \int_{loop} \frac{\cos\theta dl}{y^2+R^2} $$ where $\cos\theta = R(y^2+R^2)^{-1/2}$. Putting this in the equation and evaluating the integral we get $$ \vec{B} = \frac{\mu_0 I R^2}{2 (y^2+R^2)^{3/2}}\hat{j} $$ and by setting $y=0$ we get the final form $$ \vec{B} = \frac{\mu_0 I}{2R} \hat{j} $$ Task: express this in terms of magnetic dipole moment $\vec{\mu} = IA \hat{n}$. {{:courses:phy102:8-7.jpeg?nolink|}} $$ \frac{\mu_0 \vec{\mu}}{2\pi y^3} $$ ===== - Ampère's law ===== {{:courses:phy102:8-8.jpeg?nolink|}} For the M path $\int \vec{B} \cdot d\vec{l} = Br d\theta = \mu_0 I$. Over the N path $\int \vec{B} \cdot d\vec{l} = 0.$ Ampere's law states $$ \oint \vec{B} \cdot d\vec{l} = \oint \frac{\mu_0 I}{2\pi r} r d\theta = \mu_0 I. $$ {{:courses:phy102:8-9.jpeg?nolink|}} Calculate magnetic field due to an infinitely long thin wire straight wire. ===== - Solenoids and toroids ===== {{:courses:phy102:8-10.jpeg?nolink|}} {{:courses:phy102:8-11.jpeg?nolink|}} Magnetic field outside the solenoid is zero and inside $B=\mu_0 n I$ where is $n$ is the number of turns. {{:courses:phy102:8-13.jpeg?nolink|}} A magnetic resonance imaging (MRI) machine. {{:courses:phy102:8-12.jpeg?nolink|}} For paths $D_1$ and $D_2$, no net current passes through the surface. For path $D_2$ $$ \oint \vec{B} \cdot d\vec{l} = \mu_0 N I \Rightarrow B = \frac{\mu_0 NI}{2\pi r}. $$ ===== - Magnetism in matter ===== ==== - Paramagnetic material ==== {{:courses:phy102:8-14.jpeg?nolink|}} $$ \vec{B} = \vec{B}_0 + \vec{B}_m = \vec{B}_0 + \chi \vec{B}_0 = (1+\chi)\vec{B}_0 $$ where $\chi$ is a dimensionless quantity called **magnetic susceptibility**. The magnitude of the magnetic field $$ B = (1+\chi)\mu_0 nI = \mu nI $$ where the magnetic permeability of a material $$ \mu = (1+\chi)\mu_0 $$ where $\mu_0$ is the magnetic permeability of free space. For paramagnetic material $\chi$ is positive and it is negative for dimagnetic material. ==== - Ferromagnetic material ==== {{:courses:phy102:8-15.jpeg?nolink|}} {{:courses:phy102:8-16.jpeg?nolink|}}