====== M2. Compound pendulum ====== Determining the value of gravitational acceleration ($g$) using a compound pendulum. ===== Theory ===== {{ :courses:phy101l:2.1.png?nolink&200 |}} $$ \tau = -mgl \sin\theta = -mgl\theta. $$ $$ \tau = I \frac{d^2\theta}{dt^2} $$ $$ \tau = -mgl \sin\theta = -mgl\theta. $$ $$ \frac{d^2\theta}{dt^2} = - \frac{mgl}{I} \theta $$ $$ T_c = 2\pi\sqrt{\frac{I}{mgl}} $$ $$ I = I_G + ml^2 = mK^2 + ml^2 $$ $$ T_c = 2\pi\sqrt{\frac{mK^2+ml^2}{mgl}} = 2\pi\sqrt{\frac{\frac{K^2}{l}+l}{g}} $$ Compare this with the period of a simple pendulum $$ T_s = 2\pi\sqrt{\frac{L}{g}} $$ Comparing $T_c$ and $T_s$, $$ L = \frac{K^2}{l}+l \Rightarrow l^2 - lL + K^2 = 0. $$ This equation has two solutions $l_1$ and $l_2$ where $L=l_1+l_2$ and $K=\sqrt{l_1l_2}$. {{ :courses:phy101l:2.2.png?nolink |}} ===== Colab ===== https://colab.research.google.com/drive/1p05L2aAjIhT8xvToyOP9y_mJ8S7n6-Ls?usp=sharing ===== Appendix ===== https://rechneronline.de/earth-radius